Quiz - Object-Oriented Software Engineering - 2019-11-20

Name:| | [[[[{TTTTPPPPTTTTPPPPTTTTTTT]
HEENEEE

GitHub Identifier: | | [[[[[[[[[[][][]

Directions

We don’t allow collaboration. The only material you may consult is your
cheat sheet.

Use pencil and eraser, not pen. Readability, organization, and clean
presentation are part of what’s evaluated.

Your answers must fit in the space provided. The amount of space is
an indication of how detailed you’re expected to be.

Explain your design decisions. If you think that some aspect of a
question is left unspecified or ambiguous, just make a design decision,

justify it, and continue answering the question.

Extra Points

For each question below, you get 5 extra points if you answer right, 0 points if you

don’t answer, and -5 points if you answer wrong.
1. In the TODOOSE video series we talked about a famous TV show.
Which one?

2. My pet appeared in one of the videos of me working through an

assignment. What species of animal is it?

3. This semester we invited you to a talk in our department. The speaker
was an important software engineer who wrote books on the topic
and spoke in conferences around the world. Who's that person and

what was the talk about?

Background
TODOOSE became the most popular to-do application on the market!
We're expanding our team and you're in charge of training a new

member, Patricia:

Page 10f11

Collaboration Workflow

15 points

Patricia knows just enough about Git & GitHub to be dangerous: what’s a
repository and a commit, and how to push and pull. Explain to her step
by step the workflow that we use to collaborate. This is the workflow that
we recommended for the group projects and that we followed on the
TODOOSE video series.

Your goal is for Patricia to understand the collaboration workflow, not
necessarily for her to be able to execute it. Explain the reasons for the
steps, for example, “we do X because it allows us to Y”; don’t give recipes,
for example, “click on button X in IntelliJ, then click on button Y on

GitHub.”

Page 2 0of 11

Architecture of a Web Application

Patricia is new to web development. You’re going over the TODOOSE
codebase with her and she asked you the following questions:

1. 1point In the deployed version of TODOOSE, where does the server

part of the application run?

2. 1point And where does the client part of the application run?

3. 1point What part of the application is responsible for originating

HTTP requests: server or client?

4. 1point And what part of the application is responsible for responding

to HTTP requests: server or client?

5. 7 points The server is composed of Models, Controllers, Router,

Repositories, and Database. What are each of these for?

6. 1point What language does the Java part of the server use to

communicate to the Database?

7. 1point And in what format is the data communicated from the server

to the client?

8. 7 points Let’s bring together the answers from the questions above.
Draw a diagram tracing through the request-response cycle to get the
list of items (GET http://localhost:7000/items). Indicate where the
different parts of the application are running; show where the request
originates; show the components of the server that are activated, and
the order in which they’re activated; and include examples of the data
as it’s transmitted. We drew a similar diagram in Lecture 1: Design

Rudiments.

Page 3 0f11

Page 4 of 11

Class Diagram

15 points

Thanks to your help Patricia now understands the existing codebase and

she’s ready to start working on new features for TODOOSE. The idea

behind these features is to make TODOOSE more suitable for managing a

team of software engineers. Here’s a breakdown:

« Introduce the notion of multiple to-do lists. For example, if we used
TODOOSE to manage the development of TODOOSE itself, then we
could have different to-do lists for the teams working on TODOOSE
Community Edition and TODOOSE Enterprise Edition.

« Introduce the notion of users, who may be either project managers or
developers.

« Project managers may see all to-do lists and create new ones. They may
create new to-do items in these lists and edit the items descriptions, but
not mark them as done.

« Developers may only see the to-do lists that a manager allowed them to
see. They may mark to-do items as done, but not create new ones or
edit their descriptions.

Help Patricia get started by drawing a class diagram of TODOOSE

including these new features. Include classes, attributes, methods,

parameters types, return types, associations, multiplicities, whole-part
diamonds, inheritance, annotations, and so forth. Don’t include
implementation-specific details, for example, getters and setters,

identifiers, controllers, and so forth.

Page 50f11

Page 6 0f11

Design Principles & Design Patterns
You're teaching Patricia about Javalin and you mentioned that it includes
an example of a design pattern called Fluent Interface. Here’s an excerpt

from Server.java to show it:

Javalin.create(/* ... */)
.events(/* ... x/)
.routes(/* ... x/)
.exception(/* ... */)

.start(/*x ... *});

Patricia wanted to learn more about Fluent Interfaces, but she couldn’t
find it in the classic books & catalogs of design patterns. Help her out:
1. 5points Consider the Design Principles of Keep It Simple,
Stupid (KISS), Don’t Repeat Yourself (DRY), and Interface
Segregation (the I in SOLID). Is the Fluent Interface in Javalin

following or breaking these principles? Why?

2. 5points Draw a class diagram to capture the essence of the Fluent

Interface as implemented in the Javalin class.

Page 7 of 11

Implementation

Help Patricia understand some parts of the codebase that are using newer

language features:

1.

5 points In Server. java, Patricia found the following line:
var itemsController = new ItemsController();

Explain to Patricia the use of var in Java: What is it doing? Why is it a
good idea to use it? How would we have written a line like this before

the introduction of var?

5 points Patricia went to Javalin’s website to learn more about it, and
right on the homepage she found the following line:

app.get("/", ctx —> ctx.result("Hello World"));

Patricia has never seen code like

ctx —> ctx.result("Hello World")

before. Explain it to her: What is this code doing? Why did the

designers of Javalin want you to write code like this when calling

app.get()?

Page 8 of 11

3.

5 points In the JavaScript part of the application, Patricia found a

function that looks like the following:
async function getDataFromServer() {
/* ... %/ await fetch("/items") /* ... %/

}
Explain async/await to Patricia: What is this doing? Why do we want

to use await with fetch()?

Security & User Management

1.

2 points Following the design you proposed in § Class Diagram,
Patricia started adding the notion of users to TODOOSE. She proposed
to simply store passwords in plan text in the database. Why is this a

bad idea?

2 points Your arguments convinced Patricia to protect the passwords,
and she invented her own algorithms for doing it. Why is this a bad

idea?

Page 9 of 11

2 points Your arguments convinced Patricia to use a standard
algorithm for password protection, berypt. Now she’s trying to
understand a little bit about how it works. On a high level, what does
berypt do to the password on user signup, and how does it verify a

password on user login?

2 points Patricia was reading about berypt and the documentation

mentioned a salt. What’s that? Why is it necessary?

2 points Why must we protect passwords with Key Derivation
Functions like berypt, instead of regular hashing algorithms like MD5
and SHA?

5 points Recall from § Class Diagram that project managers may not
mark items as done—that’s the job of the developers. Patricia is
wondering where she should implement the logic to check whether a
user is a project manager and prevent them from marking items as

done. Should she do it on the client, or on the server? Why?

Page 10 of 11

Programming Paradigms

Patricia saw us playing with the codebase for the Rock-Paper—Scissors
game. We have two different versions of code that accomplishes the same
task:

Version 1

class Rock {}
class Paper {}
class Scissors {}

function toString(playerChoice) {
if (playerChoice instanceof Rock) return "\¥";

)

if (playerChoice instanceof Paper) return " ='";
if (playerChoice instanceof Scissors) return

[[ESVeRTIN
/N

Version 2

class Rock {
toString() {
return "\P";
}
}

class Paper {
toString() {

return " =";
¥
}

class Scissors {
toString() {

return "9°";

b

1. 2 points Which version is written in an object-oriented style, and

which is written in a functional style?

2. 8points In general, when would you advise Patricia to write code in
an object-oriented style? And when would you advise her to write

code in a functional style?

Page 11 0f 11

	Quiz · Object-Oriented Software Engineering · 2019-11-20
	Directions
	Extra Points
	Background
	Collaboration Workflow
	Architecture of a Web Application
	Class Diagram
	Design Principles & Design Patterns
	Implementation
	Security & User Management
	Programming Paradigms

